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Plan for Today

• Motivation for backpropagation
• Intuition for backpropagation
• Toy model
• Matrix calculus
• Neural network forward pass
• Neural network backward pass
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How do we efficiently compute 
the gradient over deep networks?
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Loss function

• Training dataset of I pairs of input/output examples:

• Loss function or cost function measures how bad model is:

   or for short:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better
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Gradient descent algorithm

Also notated as ∇𝑤𝐿
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But so far, we looked at simple models that 
were easy to calculate gradients

For example, linear, 1-
layer models. Least squares loss for 

linear regression

Partial derivative w.r.t. 
each parameter
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What about deep learning models?
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We need to compute partial derivatives w.r.t. 
every parameter!
Loss: sum of individual terms:

SGD Algorithm:

Millions and even billions of 
parameters:

We need the partial derivative with 
respect to every weight and bias we 
want to update for every sample in 
the batch.

𝜙 = {𝛽0, Ω0, 𝛽1, Ω1, 𝛽2, Ω2, … } 

8



Network equation gets unwieldy even for 
small models
• Model equation for 2 hidden layers of 3 units each:

1st hidden layer

2nd hidden layer
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Don’t We Have Auto Grad?

• The backpropagation formulas for gradients are going to guide us 
to better initializations next lecture.

• Many problems with neural network training are due to poor 
gradient management.



Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass
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Problem 1:  Computing gradients

Loss: sum of individual terms:

SGD Algorithm:

Parameters:

Need to compute gradients
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Algorithm to compute gradient efficiently

• “Backpropagation algorithm”
• Rumelhart, Hinton, and Williams (1986)
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BackProp intuition #1:  the forward pass

• The weight on the orange arrow multiplies activation (ReLU output) of previous 
layer  

• We want to know how change (partial derivative) in orange weight affects loss
• If we double activation in previous layer, weight will have twice the effect
• Conclusion: we need to know the activations at each layer.
• Put another way: we need to evaluate each partial derivatives for each input
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BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer 
𝐡3modifies the loss, we need to know:
• how a change in layer 𝐡3 changes the model output 𝐟
• how a change in the model output changes the loss 𝑙
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BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer 
𝐡2modifies the loss, we need to know:
• how a change in layer 𝐡2 affects 𝐡3 
• how 𝐡3 changes the model output 𝐟
• how a change in the model output 𝐟 changes the loss 𝑙

We know this from the 
previous step
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BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer 
𝐡1modifies the loss, we need to know:
• how a change in layer 𝐡1 affects 𝐡2 
• how a change in layer 𝐡2 affects 𝐡3 
• how 𝐡3 changes the model output 𝐟
• how a change in the model output 𝐟 changes the loss 𝑙

We know these from the 
previous steps
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Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass
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Toy Network

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

𝑥𝑖 ℎ1 ℎ2 ℎ3 𝑓 ℓ𝑖

𝑦𝑖
1 input

3 layers, 1 hidden unit each

ground truth output

ℓ𝑖 = 𝑓 𝑥𝑖, 𝜙 − 𝑦𝑖
2
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Gradients of toy function

We want to calculate each partial:

Tells us how a small 
change in 𝛽𝑗  or 𝜔𝑗  change 
the loss ℓ𝑖  for the ith 
example

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2
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Toy function

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑥𝑖 ℎ1 ℎ2 ℎ3 𝑓3 ℓ𝑖

𝑦𝑖

𝑓0 𝑓1 𝑓2

Pre-Activations
𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 

Intermediate values
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Refresher: The Chain Rule

For g 𝑥 = ℎ 𝑓 𝑥  

then 𝑔′ 𝑥 = ℎ′ 𝑓 𝑥  𝑓′ 𝑥 , where 𝑔′ 𝑥  is the derivative of g 𝑥 .

Or can be written equivalently as

𝜕𝑔

𝜕𝑥
=

𝜕ℎ

𝜕𝑓

𝜕𝑓

𝜕𝑥

𝑓 ℎ𝑥

𝑔
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Forward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥𝑖  
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2
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Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The first of these 
derivatives is trivial

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑓3  −  𝑦𝑖

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second of these 
derivatives is 
computed via the 
chain rule

How does a small 
change in ℎ3 change ℓ𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second 
derivative is 
computed via the 
chain rule

How does a small 
change in 𝑓3 change ℓ𝑖?

How does a small 
change in ℎ3 change 
f3?

How does a small 
change in ℎ3 change 
ℓ𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 

28



Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second of these 
derivatives is computed 
via the chain rule

Already computed!

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule

Already computed!

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule
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Backward pass
1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further 
use of chain rule
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We extend this to get to the 
parameters 𝜔’s and 𝛽’s
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Backward pass
2. Find how the loss 
changes as a function 
of the parameters  
and .

• Another 
application of the 
chain rule

How does a small 
change in 𝑓𝑘 change 
𝑙𝑖?How does a small 

change in k change 𝑓𝑘?

How does a small 
change in k change 
𝑙𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
2. Find how the loss 
changes as a function 
of the parameters  
and .

• Another 
application of the 
chain rule

Already calculated 
in part 1.𝜕𝑓𝑘

𝜕𝜔𝑘
= ℎ𝑘  How does a small 

change in k change 𝑙𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
2. Find how the loss 
changes as a function of 
the parameters  and .

• Another application 
of the chain rule

• Similarly for  

parameters

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Backward pass
2. Find how the loss 
changes as a function of 
the parameters  and .

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥 
ℎ1 = a[𝑓0] 
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1 
ℎ2 = a[𝑓1] 

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2 
ℎ3 = a[𝑓2] 
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3 
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2 
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Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass
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Matrix calculus

Scalar function 𝑓 ⋅  of a vector 𝐚

The derivative with respect to vector 𝐚 is a vector of the same shape as 𝐚.
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Matrix calculus

Scalar function 𝑓 ⋅  of a matrix 𝐀

The derivative with respect to matrix 𝐀 is a matrix of the same shape as 𝐀.
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Matrix calculus
Vector function 𝐟 ⋅  of a vector 𝐚

Vector of scalar valued functions

Columns are each 
element function

Rows are each 
variable element
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Comparing vector and matrix

Scalar derivatives:
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Comparing vector and matrix

Scalar derivatives:

Matrix derivatives:
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Comparing vector and matrix

Scalar derivatives:

Matrix derivatives:
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Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass
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The forward pass

1. Write this as a series 
of 
intermediate 
calculations

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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The forward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass
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The backward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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Yikes!

• But:

• Quite similar to:
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The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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Derivative of ReLU
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Derivative of ReLU

“Indicator function”

ReLU 𝑧 = max(0, 𝑧)

𝜕ReLU[𝑧]

𝜕𝑥
= 𝕀[𝑧 > 0]
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Derivative of ReLU
1. Consider:

where:

2. We could equivalently write: 3. Taking the derivative

4. We can equivalently pointwise multiply by diagonal
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The backward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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The backward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

4. Take derivatives w.r.t.
parameters

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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The backward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

4. Take derivatives w.r.t.
parameters

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3
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Pros and cons

• Extremely efficient
• Only need matrix multiplication and thresholding for ReLU functions

• Memory hungry – must store all the intermediate quantities
• Sequential

• can process multiple batches in parallel
• but things get harder if the whole model doesn’t fit on one machine.
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Looking Ahead to Initialization

The chain rule tells us to multiply all these “local” partial derivatives 
together…

• What happens when most of those values are >2.0?
• What happens when most of those values are <0.5?

Our initialization will be setting the initial local partial derivatives.
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