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Plan for Today

* Motivation for backpropagation
* Intuition for backpropagation

* Toy model

* Matrix calculus

* Neural network forward pass

* Neural network backward pass
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How do we efficiently compute
the gradient over deep networks?



Loss function

* Training dataset of / pairs of input/output examples:
I

or measures how bad model is:

L[¢7 f [X’iv ¢]7 {Xi7Yi zlzl]

or for short:

L [¢} Returns a scalar that is smaller

when model maps inputs to
outputs better



Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:
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Step 2. Update the parameters according to the rule:

oL
¢<— Qb—&'%:

where the positive scalar o determines the magnitude of the change.



But so far, we looked at simple models that
were easy to calculate gradients

For example, linear, 1-
layer models.

WC[?% /?’513 Bt X

Least squares loss for
linear regression

I
= (o + ¢r2i —ui)°
i=1

Partial derivative w.r.t.
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What about deep learning models?
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We need to compute partial derivatives w.r.t.
every parameter!

1 1

Loss: sum of individual terms: L[¢] — Z V; = Z l[f[X“ qﬁ]’ yz]

1=1 1=1

ol; |
SGD Algorithm: ¢t—1—1 A ¢t Z ¢t

’LEBt
Millions and even billions of —
parameters: ¢ _ {ﬁO’QO’ 181'9'11 BZ’QZ’ }
We need the partial derivative with 6€z @fz
respect to every weight and bias we and
want to update for every sample in 0Bk 8Qk

the batch.



Network equation gets unwieldy even for
small models

* Model equation for 2 hidden layers of 3 units each:

y' = ¢p + dralio + Yi1a[bio + O112] + Y12a[fa0 + O212] + 13alf30 + O312]]
+ phalthag + h21a[f10 + 0112] 4+ Y22a[l20 + O217] + Pazalf30 + 312]]
+ ghalthso + s1albro + O112] + hs2alfag + Oa12] + 1338[f30 + O312]]
\ } \ } \ }
Y Y Y

/
\ 1t hidden layer /




Don’t We Have Auto Grad?

* The backpropagation formulas for gradients are going to guide us
to better initializations next lecture.

* Many problems with neural network training are due to poor
gradient management.



Gradients

* Toy model

* Matrix calculus

* Backpropagation matrix forward pass

* Backpropagation matrix backward pass
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Problem 1: Computing gradients

1 1
Loss: sum of individual terms: L[¢] — Z V; = Z l[f[XZ, ¢]7 yz]
1=1 1=1
o0l; |
SGD Algorithm: Dy S Py — Z qbt
@EBt
Parameters:
¢ — {/8()7 ﬂ()a /817 ﬂla /827 ﬂ27 /837 Q3}

ol; ol;

Need to compute gradients and

0B, 0,
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Algorithm to compute gradient efficiently

° € »

* Rumelhart, Hinton, and Williams (1986)
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BackProp intuition #1:

Wy Y

0 Training
s output, y
\
e s
Training Hidden Hidden Hidden Output Loss. |
input, x layer, h; layer, hy layer, hg flx, ¢] 7

* Theweight on the orange arrow multiplies activation (ReLU output) of previous
layer
* We wantto know how change (partial derivative) in orange weight affects loss

* If we double activation in previous layer, weight will have twice the effect
* Conclusion:

. Put another way:
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BackProp intuition #2:

Q Q 0 Qs 23
20 O O—
O O O O
O O O
Training Hidden Hidden Hidden Output

input, x layer, hy layer, hy layer, hs fix, @] Loss, {

To calculate how a small change in a weight or bias feeding into hidden layer
h;modifies the loss, we need to know:

 how achange in layer h; changes the model output f
* how achange in the model output changes the loss [

15



Cheinrale; ’pcj (<)) ﬁ&
BackProp intuition #2: the backward pass /%3%(?

(O
2O 0 A=
O (O—= (D
O O 9 ~ @
O
Training Hidden Hidden Hidden Output
input, x layer, hy layer, hy layer, hs fix, @]

Loss, (

To calculate how a small change in a weight or bias feeding into hidden layer

h, modifies the loss, we need to know:

 how achangeinlayer h, affects h;

* how h; changes the model output f We know this from the
* how achange in the model output f changes the loss [ previous step



BackProp intuition #2: the backward pass
Do o= —
Training Hidden Hidden Hidden Output I l
input, x layer, h; layer, hy layer, hs fix, @] 55
To calculate how a small change in a weight or bias feeding into hidden layer
h; modifies the loss, we need to know:
 how achangein layer h, affects h,
* how achangein layer h, affects h;
* how h; changes the model output f | Weknowthese from the

. revious steps
 how achange in the model output f changes the loss [ Previou P
— 17




Gradients
* Backpropagation intuition
e Matrix calculus

* Backpropagation matrix forward pass
* Backpropagation matrix backward pass
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ground truth output

Toy Network

19



Gradients of toy function

flx;, @] = p3 + w3 -a[ﬁ2+w2-a

;= (flx;, ¢.

We want to calculate each partial:

oY;
960

%

6’w0 ’

ol;
0B
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(9(,01 ’

ol;
e

B1+ wy - alBo + wo - x|

?

2
s,
ol; ol; nd ol;
&ug ’ ({953 ’ 8w3
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Toy function O
OmO ()= )= () — ()~

AN

Pre-Activations

fo="PBo +wo-x f=02+wyhy
hy = alfo] h; = al[f;]
fi=btw -y fz=PpF3+ w3 h3
h, = al[fi] £ = (y; — f3)°

~_ o

Intermediate values



Refresher: The Chain Rule
—O—E—

g
Forg(x) = h_([@

then g'(x) = h’(f(x)) f'(x), where g'(x) is the derivative of g(x).

Or can be written equivalently as

0g 0h of
dx Of Ox

22



Forward pass

flx;, ] = B3 + w5 - a [,[)’2 + w, - a[ﬁ1 + wy - alfy + w xl]]]

£ = (f[x;, @] — y)*

1. Write this as a series of
intermediate calculations

fo = PBo + wo  x; fo = B2+ w; - h,
2. Compute these hy = alfo] h; = alf;]
intermediate quantities f1 — ,81 + wq - h1 f3 — 133 + ws - h3
h, = alf] b= (i = f3)° &jﬂ ,2[7’ 70%
o



Backward pass

flx;, ¢l = B3 + w3 -a[ﬁ2+w2-a

B1 + wy - alBo + wg - x1]]|

£; = (flx;, dl — y:)*
1. Compute the
derivatives of the (oss ol; ol; ol; ol; ol; 0l; nd 0l
with respect to these 8f3 ’ Ohs ’ 6f2 ’ Ohs ’ 3]01 ’ Ohq ’ afo
intermediate quantities, —
but in reverse order.
 C——

O~~~ O—O—C—E——0



Backward pass

flx;, ] = B3 + w5 - a [,82 + w, 'a:,B1 + w4 - alfy + w ‘xi]]]

£; = (f[x;, @] — ¥)*

1. Compute the

derivatives of the loss e, ol ol oL, 0l; ol

with respectto these and 3&-
intermediate quantities, 0f3 " Ohs’ df5 " Ohsy’ 0 f1 " Ohy’ O fo

but in reverse order.

0¢; 0L; o4; 045 AV (0 )
9 fo Ohy 911 Ohs 9f2 Ohs 9f3 ¢
25




E——

Backward pass

1. Compute the fo=PBo+wo-x fo =02 +wy - hy
derivatives of the loss h, = a h- = a

with respectto these 1 [/b] > [fé]
intermediate quantities, f1 — ,81 + w1 ° hl f3 — ,83 + W3 - h3
but in reverse order. hz — a[fl] fi — (f3 _ yi)z

e Thefirst of these

AR Of.
derivatives is trivial (/
of, ~ e v

26



E——

Backward pass

1. Compute the fo=Po + wp - x f2 =02+ wy - hy
derivatives of the loss hy = alf,] h; = alf,]

with respect to these _ . — :
intermediate quantities, h=ptw-h f3 = b3 + w3 - hs
but in reverse order. h, = a|fq] £ = (yi — f3)*

* The second of these
derivatives is 8€Z L 8f3 agl
computed via the -
chain rule ahS ahS 8f3

/

How does a small
change in h; change £;?

27



E——

Backward pass

1. Compute the fo=PBo+wo-x fo =02 +wy - hy
derivatives of the loss h, = a h- = a

with respectto these 1 [fO] > [fZ]
intermediate quantities, f1 — ,81 + w1 ° hl f3 — ,33 + W3 - h3
but in reverse order. hz — a[fl] fi — (yl_ _ f3)2

e Th d
o Of; L,
computed via the —

chainrule 6h3 N (9h3 8f3

/ How does a small

change in f3 change ¢;?

How does a small
change in h; change
;7

How does a small
change in h; change
f.?

28



E——

Backward pass

1. Compute the fo=PBo+wo-x fo =02 +wy - hy
derivatives of the loss h, = a h- = a

with respectto these 1 [fO] > [fZ]
intermediate quantities, f1 — ,81 + w1 ° hl f3 — ,83 + W3 - h3
but in reverse order. hz — a[fl] fi — (yl_ _ f3)2

* Th d of th @5 + U <)
et 9l Ofs 0 vy [Fressy)
ia the chain rule — -
S Ohs  Ohs Of Ohs S hs

K/) | = Lo

Already computed!
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E——

Backward pass

1. Compute the fo=PBo+wo-x fo =02 +wy - hy
dgrlvatlves of the loss h, = a[fy] Vhy = alf,]
with respectto these
intermediate quantities, f1 — ,81 + w1 ° hl ‘/f3 — ,83 + W3 - h3
but in reverse order.
h, = alfi] £; = (y; _fs)z
o ol;  Ohz (0fs3 OF;

o The.ren.’lalnlng an — an Ohs 8f3 )

derivatives also L —

.
calculated by further 5}% hs DA
use of chain rule <~ Y <5 ~Ni.

O, T 3 Hh3

30



Backward pass

1. Compute the
derivatives of the loss
with respectto these
intermediate quantities,
but in reverse order.

* Theremaining
derivatives also
calculated by further
use of chain rule

E——

fo = Po+ wp - x fo =B+ w; - hy

hy = alfy] g h; = alf;]
fi=B+w - hy f3 = B3+ w3 - hg
h, = alf;] £ = (y; — f3)°
o5 = o (oo o1,

Ohs O fs
1;

Already computed!
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4———

Backward pass

1. Compute the fo=PBo+wo-x fo =02 +wy - hy
derivatives of the loss h, = a h- = a

with respectto these 1 [fO] > [fZ]
intermediate quantities, f1 — ,81 + w1 ° hl f3 — ,83 + W3 - h3
but in reverse order. / hz — a[fl] fi — (yl_ _ f3)2

* Theremaining / =
/ 0 s, Ohs 0
derivatives also , /> /2 3 0fs

calculated by further | ot _ 0f (8h3 Ofs 357;)
use of chain rule " _Ohy  Oha \ Of2 Ohz Of3

32



E——

Backward pass

1. Compute the fo =080+ wo-x fo = B2 + wy - hy
derivatives of the loss hy = a[fo] h3 — a[fz]
with respectto these
intermediate quantities, fi=p1+twi Ny f3 = Pz + w3 - hs
but in reverse order. hz — a[fl] fi — (yl_ _ f3)2
™ o ol;  Ohs (8]"3 (%7;)
e remaining 5f,  0f, \Ohs 0fs

derivatives also
calculated by further

use of chain rule Oha 3h2
(‘9& O0fy Ohs Of3 O4; )

ol (
df1 af1 (3h2 Of2 Oh3 0 f3

_0fs

<.

Ohs 0f3 5&)
Of2 Ohs O f3

<.

Ol; _ Of1 (Ohy Ofz Ohs Ofs O
Oh (‘9h1 0f1 Ohg Ofy Ohs 6’fB)

OF, Ohy Ofs Ohs Ofs O
Ohy Of1 Ohg Ofa Ohs 3f3)

ol;
dfo

33



E——

Backward pass

1. Compute the
derivatives of the loss
with respectto these

intermediate quantities, ol ,
but in reverseqorder. Ofs 2(fs = ui)
ol;  Ofs oL
Ohs  Ohs Ofs
. ol;  Ohs (Of3 OL;
. Lhe.ren.qalnlng of, — 0fs ((%3 8]"3)
erivatives also
calculated by further ot _ Ofs (8h3 0fs 8&-)
use of chain rule Ohs 3h2 df2 Ohs Of3
o, (8]'"2 Ohs 0fs O¢; )
df1 af1 Ohg Of2 Ohz O f3
ol; (‘9 f1 [ Ohg Ofs Ohsg Of3 OY;
ol; 0f1 Oho Ofy Ohs Ofs 04;
8f0 (8h1 8f1 8h2 8f2 6h3 8f3) 34



%

= 2(f3 — vi)
0
Backward pass N,
Ohs  Ohs Ofs
1. Compute the Ol _ Ohs (8f3 8&-)
derivatives of the loss df2 0f2 \Ohs Of3
with respect to these ol;  Ofz (0Ohz 0fs3 OF;
intermediate quantities, Ohs 8h2 <8f2 Ohs 8]‘3)
butin reverse order. o O fs Ohs Of5 O
0f1 8f1 (0h2 0fa Ohs c‘?fg)
ol;  Ofr (Oha Ofz Ohz 0 fs OL;
* Theremaining Ohy 8h1 <8f1 Ohs O fy Ohs 8f3>
derivatives also ol; Of1 Ohy Ofy Ohs Ofs OU;
calculated by further dfy (9fo (8h1 Of1 Ohy Ofy Ohs af3>

use of chain rule

"ok
ae 8fo oL, 8h1 ol 8f1 Ol ahz oY, 8fz oL 6h3 oY,
8fo Oh 0 f1 Oho af2 Ohs 0f3

35




We extend this to get to the
parameters w’s and [’s

Pr“rz,ulwﬁly &m\Cm\of‘re,cL Pa.fbk"m'\ t/L?,F’":JUf?tT};fVQS

w/ﬁ@gf)gc{’ 0 ?f’“& Jrfs?DS‘J“ AlLH uetinng



Backward pass

2. Find how the loss fo =FBo + wo - x f2=h2twy - hy
changes as a function h, = a[f,] hs = alf;]
of the parameters
and o. P fi=P1twi My f3 = B3+ w3 - hs
h, = a[fi] £ = (yi — f3)*
* Another
application of the 8€z o 6fk agz
chainrule &uk o &uk afk

/ How does a small

change in f;, change
How does a small [;?
change in o, change f;?

How does a small
change in o, change
[;?



Backward pass

2. Find how the loss —>fo = Po + wo - x ~=>f2 = B2+ w2 hy
changes as a function h, = a[fy] h; = alf,]
of the parameters
and co.p g f‘*;)fl =p1twhy —f3 = B3 + w3 '2h3
h, = alf;] =i —f3)
 Another
application of the 8& L Gfk agz N h
chain rule awk &uk afk 535_ - ﬁ; OJ;_C <
A Bﬁﬁ
éﬁh = L = /@ + hi
O-Pr <
Already calculated
How does a small Ofk _ h in 1
. = hy part 1.
change in ®, change [;? dwg %_



Backward pass

2. Find how the loss
changes as a function of
the parameters 3 and .

* Another application
of the chain rule

e Similarly for 3
parameters

fo=PBo +wo-x f2 =02+ wy - hy
h, = a[fo] hs; = alf;]
fi=Btw -y fz = B3+ w3 - h3
h, = alfi] £ = (y; — f3)?
ol Ofy 0L
&uk N 8wk 8fk

ot i oL,
0Pk 5’&8&

1

39



Backward pass

2. Find how the loss fo=PFo+wo-x fa =02+ wz - hy
changes as a function of hl — a[fo] h3 — a[fz]

the parameters 3 and .
fi=Btw -y fz =p3+ w3 h3
h, = alfi] £ =y — f3)°

40



Gradients

* Backpropagation intuition
* Toy model

* Backpropagation matrix forward pass
* Backpropagation matrix backward pass

41



Matrix calculus

Scalar function f|-| of a vector a

- 9f -
B ] Jaq
a1 5
aA — CLQ af L 8_CL2
as da | of
a4 das
of

| Oay _

The derivative with respect to vector a is a vector of the same shape as a.

42



Matrix calculus

Scalar function f|:] of a matrix A

as31 Qs ass 0A

The derivative with respect to matrix A is a matrix of the same shape as A.

- Of of oOf 7]
oai1 dai2 dai3
of of of
8a21 8(122 80/23
of of of
daz1  Oaz2  Oass
of of of
Oayi Oa,o Oays

43



Columns are each

Matrix calculus .
element function

Vector function f[-] of a vector a |
J Rows are each

variable element

1 | "o Ofo 0 fs ]

_f —_ a/]_ aa,l 8(1,1 8@1 //
! ax| 9f |2h 9f2 Ofs
f = f2 a — —~ — | Qaz das Oas
as| PHa ofi Of2 Ofs
f3 8CLS aCLg 8a3
-7 |44 _ ofi Of2  Ofa

Vector of scalar valued functions - Jaq das das ';% = (ZE}
%2

2= 16 (8- &@3(@ £o(o)6



Comparing vector and matrix

Scalar derivatives:

0 f3 0

f3 = B3 + wshs 8—h3:0—h3

(B3 + wshs) = ws

45



Comparing vector and matrix JF D
Wy [Pz Was
|

Scalar derivatives:

f3 = B3 +wshs

Matrix derivatives:

— /53 =+ QShS

S I

w%+w%ﬁw
/j %}l%dn?

wﬂ;} —
ofs 0
8h3 = oha — (B3 + w3zh3) = w3
;£

3155(3@%5 1
(9f 0,
ah?; — (9h3 (/33 - ﬂ3h3) QT
__%ff CWL ) 1 Q-WE Wz

AVATIE W+ uf?é



Comparing vector and matrix

Scalar derivatives:

Ofs O
_ - hy =1
I3 = B3 +wshs 053 R B3 + wshs
Matrix derivatives:
Of o,

fs = B+ Qshs g, = g, Ps T fhs) =1



Gradients
* Backpropagation intuition

* Toy model
e Matrix calculus

* Backpropagation matrix backward pass

48



fo h1 Training

2 f1 h2 £, f2 h3 €25 f output,y%)

The forward pass - ;
=

Training Hidden Hidden Hidden Output Loss. |
input, x layer, h; layer, hy layer, hs fx, @] ’
1. Write this as a series
of | fo = By + Qox;
romeda bl
f, = /31 + Q1hy
hy, = a|fy]
fo = B + Q2hy
h; = a|fy]
f3 = B3 + Qshs

;= 1f3, yi] 49



f1 h2 2 f2 h3 {23 output, y

Q fO h1 Q, Training
The forward pass %Q fs ?

Q/

Training Hidden Hidden Hidden Output

input, x layer, h layer, ho layer, hg flx, ¢| Loss, {

1. Write this as a series
of fo = By + Qox;
intermediate

h, = alf
calculations 1 [ O]

fi =06, +Q1h
2. Compute these h, = a[fl]
intermediate quantities

d fo = By + Q2hy
h3 E— a[fg]
f3 = B3 + Q3hs

i = 1[f37 yz’] 50



Tralnlng

The backward pasg %%8%
Training Hldden Hidden Hidden Output I ]
input, x layer, h layer, ho layer, hg flx, ¢| 055,

1. Write this as a series ol;
of fo = ,60 —+ QQXZ' (9f3
intermediate h, — a[f ]
calculations ! 0 oY; o ohs 0fs 0Y;
hi=0, + 9f,  Of, ohy Of;
?. Compgte these N h, = al[f]]
intermediate quantities f, = B, + Qshy ({%i _ (91’12 (9f2 <3h3 8f3 8€i>
3. Take derivatives of h3 = a[f2] 8f1 8f1 (9h2 an (9h3 afg

.outputWi'th respect.t.o fa 2133 + Qsh;y (‘%Z B E)hl 8f1 (8h2 (9f2 8h3 8f3 ({9&)
intermediate quantities 0, =1[f3,yz‘] (9f0 _ (7f0 ahl 6‘f1 (9h2 an (9h3 &ﬁg



Gradients

* Backpropagation intuition

* Toy model

* Matrix calculus

* Backpropagation matrix forward pass
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Tralmng

The backward pasg S:%%N
Training H1dden Hidden Hidden Output Loss. |
input, x layer, h; layer, ho layer, hg flx, @] ’

1. Write this as a series of ol;

intermediate calculations fo = By + Qox; Ofs

2. Compute these hy = a[fo] 8& 8h3 8f3 8&

intermediate quantities f; = B, + by of, — Of, Ohs Of;
hg = a[fl]

3. Take derivatives of

output with respect to = By + Qahy

(‘9& . (91’12 (9f2 (‘9h3 8f3 862
B Ofy Ohs Of;

intermediate quantities h; = alf. 8f1 8f1 (9h2
wﬁiﬂ?)h?) (‘%Z o E)hl 8f1 (8h2 (9f2 8h3 8f3 ({9&)

l; =1 3,yz-—}““"f 8f0 8f0 5’h1 0f1 8h2 8f2 8h3 a£3




Yikes!

 But:

Of;3 0

ohs  Ohs (

* Quite similar to:

dfs 0
Ohs  Ohs

B3 + Qshs) =

(B3 4+ wshs) =

Qg

W3

54



Training

output, y
The backward pasg % §%>@
Training Hldden Hidden Hidden Output I ]
input, x layer, h layer, ho layer, hg flx, ¢| 055
1. Write this as a series Ol o _ 9 (B3 + Qshg) = Qg
of fO — 160 + QOXi af (9h3 8h3
intermediate h, — a[f ] 3
calculations ! 0 0l; o 8h3 8f3 0l;
ho=p i of,  Ofy ohy 0f;
2. Compute these hy, = a[fl]
intermediate quantities £, = 3, + Qohy 0l; _ ohy 0f5 (8}13 Ofs ({%i)
3. Take derivatives of hz = alfy] oty of; Ohy ot (9h3 afg

.outputWi'th respect.t.o fa 2133 + Qsh;y (‘%Z B E)hl 8f1 (8h2 (9f2 8h3 8f3 ({9&)
intermediate quantities 0, =1[f3,yz‘] (9f0 _ (7f0 ahl 6‘f1 (9h2 an (9h3 a£3



Tralmng

The backward pasg S:%%N
Training H1dden Hidden Hidden Output I ]
input, x layer, h layer, ho layer, hg flx, ¢| 055,

1. Write this as a series ol;
of fo = ,60 -+ QQXZ' (9f3
intermediate h, — a[f ]
calculations ! 0 oY; o Ohs 0fs 0Y;
fy =0+ by 0f, | 0f|0h; Of;
2. Compute these h2 = a|fy]
intermediate quantities — B, + Qshy ({%i B (91’12 (9f2 <3h3 8f3 ({%i)
3. Take derivatives of = h3 — a@b Oty ofy Ohy \ 0t dhs Of;

.OUtpUtWi'th reSpeCt.t.O = B3 + Qshs (‘%Z B oh; 0Of; (8h2 ofs 8h3 8f3 ({9&)
intermediate quantities ﬁf;:l[fg,yi] (9f0 — (7f0 8h1 6f1 (9h2 an (9h3(95ﬁ3



Derivative of RelLU

2.0

Output
o
o

ReLU][2]

57



Derivative of RelLU

2.0

Output
o
o

ReLU][2]

ReLU|z]| =

dReLU[7]

dx

max(0, z)

= [l|z > 0]

“Indicator function”

58



Derivative of RelLU

_ where: - T
1. Consider: a1
a— |Uo
a = ReLU|b|
as
2. We could equivalently write: 3. Taking the derivative
P B T 7,1 [ Da da das |
ai ReLU _bl_ Ha 9bi  @bi by
T [ ] o 8&1 8a2 8&3
as | = ReLLU bg ob | 8b2 9b2 @b
- - . Oaq Oas odas
as ReLLU _bg_ | Obs  Obz  Obs |

4. We can equivalently pointwise multiply by dlagonal

H[b > O @Kwﬁ—o Uu@t&f\m\vk\f

A0 W/ili}hm@ W\Gﬁ—ftﬁsg



The backward pas
e

1. Wrrite this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respectto
intermediate quantities

Training
output, y

Training Hldden Hidden Hidden Output

input, x  layer,h;  layer, hy layer, hs fix, ¢] Loss, {
0l

fo = By + Qox; Of 3 ]I[fQ > O]
by = alfo o6, |ong| oty o1,
fi = 8, + Qb Of; | 0f,|0h; Of;
hy, = a|fy]
b B+ b, ot _ Ohy Of, <ah3 Ofs aez)
hs = a[f] of; of; 0hy \ 0fy Ohs 0f;

= 85 + Qsh; of;  Ohy Of; (Ohy Ofy Ohz 0f3 0/;
;= 1[fs, yi] of, 0fy Oh; ((9f1 Ohs 0fy Ohjs &ﬁg)



1. Wrrite this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respectto
intermediate quantities

4. Take derivatives w.r.t.
parameters

fl 1'12 QQ f2 h3 QS

Training
output, y

Training Hidden Hidden Hidden Output Loss. |
input, x layer, h; layer, hy layer, hs fx, @] ’
/:) \!/j A £ -Q«f

fo = /60 + Qox; (967, 8fk 86 =

hy = alfy] 9By, 0By Ot

f; =B, + Qi (f@—d/—x ol

hy = alfi] = o, e T g

fo = By + Q2hy 04, e

hs = a[fy] - ofy’

f3 = /33 + 23h;

i =1f3, yi] o



The backward pas

1. Wrrite this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respectto
intermediate quantities

4. Take derivatives w.r.t.
parameters

fo hy

Training
o f1 h2 {2 fZ h3 {23 output, y
Training H1dden Hidden Hidden Output I ]
input, x layer, h layer, ho layer, hg flx, ¢| 055,
r @E?m‘l’ i SLK
fo = By + Qox; E)EZ B (9fk 861
h; = afo] oy, 0y, Of
fy =6, +Q1hy 0 OY;
_ = 55 (B, + Qihy) ==
h, = alf;] 0 ot}
fo = 8, + Q2hy oY W7
— k
hs = a[fQ] 8fk
f3 = B35 + Qs3h;
gi — 1[f37 yl] o2



Pros and cons

* Extremely efficient
* Only need matrix multiplication and thresholding for ReLU functions

* Memory hungry — must store all the intermediate quantities

* Sequential
* can process multiple batches in parallel
* but things get harder if the whole model doesn’t fit on one machine.
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Looking Ahead to Initialization

The chain rule tells us to multiply all these “local” partial derivatives
together... 0l;  Ohy Ofy (Ohg Ofs OL;

of,  Of, ohy (af2 ohs af3>

ol;  Ohy 0f; [ Ohy Ofy Ohg Ofy 0/;

of,  Of, oh, <6f1 Oh, Of, Ohs 8f3>

* What happens when most of those values are >2.07
* What happens when most of those values are <0.57

Our initialization will be setting the initial local partial derivatives.
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