
Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/
Backpropagation

Original slides by Tom Gardos,
other content from Understanding Deep Learning unless otherwise cited

1

https://dl4ds.github.io/fa2025/

Plan for Today

• Motivation for backpropagation
• Intuition for backpropagation
• Toy model
• Matrix calculus
• Neural network forward pass
• Neural network backward pass

2

How do we efficiently compute
the gradient over deep networks?

3

Loss function

• Training dataset of I pairs of input/output examples:

• Loss function or cost function measures how bad model is:

 or for short:

Returns a scalar that is smaller
when model maps inputs to
outputs better

4

Gradient descent algorithm

Also notated as ∇𝑤𝐿

5

But so far, we looked at simple models that
were easy to calculate gradients

For example, linear, 1-
layer models. Least squares loss for

linear regression

Partial derivative w.r.t.
each parameter

6

What about deep learning models?

7

We need to compute partial derivatives w.r.t.
every parameter!
Loss: sum of individual terms:

SGD Algorithm:

Millions and even billions of
parameters:

We need the partial derivative with
respect to every weight and bias we
want to update for every sample in
the batch.

𝜙 = {𝛽0, Ω0, 𝛽1, Ω1, 𝛽2, Ω2, … }

8

Network equation gets unwieldy even for
small models
• Model equation for 2 hidden layers of 3 units each:

1st hidden layer

2nd hidden layer
9

Don’t We Have Auto Grad?

• The backpropagation formulas for gradients are going to guide us
to better initializations next lecture.

• Many problems with neural network training are due to poor
gradient management.

Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass

11

Problem 1: Computing gradients

Loss: sum of individual terms:

SGD Algorithm:

Parameters:

Need to compute gradients
12

Algorithm to compute gradient efficiently

• “Backpropagation algorithm”
• Rumelhart, Hinton, and Williams (1986)

13

BackProp intuition #1: the forward pass

• The weight on the orange arrow multiplies activation (ReLU output) of previous
layer

• We want to know how change (partial derivative) in orange weight affects loss
• If we double activation in previous layer, weight will have twice the effect
• Conclusion: we need to know the activations at each layer.
• Put another way: we need to evaluate each partial derivatives for each input

14

BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer
𝐡3modifies the loss, we need to know:
• how a change in layer 𝐡3 changes the model output 𝐟
• how a change in the model output changes the loss 𝑙

15

BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer
𝐡2modifies the loss, we need to know:
• how a change in layer 𝐡2 affects 𝐡3
• how 𝐡3 changes the model output 𝐟
• how a change in the model output 𝐟 changes the loss 𝑙

We know this from the
previous step

16

BackProp intuition #2: the backward pass

To calculate how a small change in a weight or bias feeding into hidden layer
𝐡1modifies the loss, we need to know:
• how a change in layer 𝐡1 affects 𝐡2
• how a change in layer 𝐡2 affects 𝐡3
• how 𝐡3 changes the model output 𝐟
• how a change in the model output 𝐟 changes the loss 𝑙

We know these from the
previous steps

17

Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass

18

Toy Network

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

𝑥𝑖 ℎ1 ℎ2 ℎ3 𝑓 ℓ𝑖

𝑦𝑖
1 input

3 layers, 1 hidden unit each

ground truth output

ℓ𝑖 = 𝑓 𝑥𝑖, 𝜙 − 𝑦𝑖
2

19

Gradients of toy function

We want to calculate each partial:

Tells us how a small
change in 𝛽𝑗 or 𝜔𝑗 change
the loss ℓ𝑖 for the ith
example

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

20

Toy function

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑥𝑖 ℎ1 ℎ2 ℎ3 𝑓3 ℓ𝑖

𝑦𝑖

𝑓0 𝑓1 𝑓2

Pre-Activations
𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

Intermediate values
21

Refresher: The Chain Rule

For g 𝑥 = ℎ 𝑓 𝑥

then 𝑔′ 𝑥 = ℎ′ 𝑓 𝑥 𝑓′ 𝑥 , where 𝑔′ 𝑥 is the derivative of g 𝑥 .

Or can be written equivalently as

𝜕𝑔

𝜕𝑥
=

𝜕ℎ

𝜕𝑓

𝜕𝑓

𝜕𝑥

𝑓 ℎ𝑥

𝑔

22

Forward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥𝑖
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

23

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

24

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

f 𝑥𝑖 , 𝜙 = 𝛽3 + 𝜔3 ⋅ a 𝛽2 + 𝜔2 ⋅ a 𝛽1 + 𝜔1 ⋅ a 𝛽0 + 𝜔0 ⋅ 𝑥𝑖

ℓ𝑖 = 𝑓 𝑥𝑖 , 𝜙 − 𝑦𝑖
2

25

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The first of these
derivatives is trivial

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑓3 − 𝑦𝑖

2

26

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second of these
derivatives is
computed via the
chain rule

How does a small
change in ℎ3 change ℓ𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

27

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second
derivative is
computed via the
chain rule

How does a small
change in 𝑓3 change ℓ𝑖?

How does a small
change in ℎ3 change
f3?

How does a small
change in ℎ3 change
ℓ𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

28

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second of these
derivatives is computed
via the chain rule

Already computed!

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

29

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

30

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Already computed!

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

31

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

32

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

33

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

34

Backward pass
1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

35

We extend this to get to the
parameters 𝜔’s and 𝛽’s

36

Backward pass
2. Find how the loss
changes as a function
of the parameters 
and .

• Another
application of the
chain rule

How does a small
change in 𝑓𝑘 change
𝑙𝑖?How does a small

change in k change 𝑓𝑘?

How does a small
change in k change
𝑙𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

37

Backward pass
2. Find how the loss
changes as a function
of the parameters 
and .

• Another
application of the
chain rule

Already calculated
in part 1.𝜕𝑓𝑘

𝜕𝜔𝑘
= ℎ𝑘 How does a small

change in k change 𝑙𝑖?

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

38

Backward pass
2. Find how the loss
changes as a function of
the parameters  and .

• Another application
of the chain rule

• Similarly for 

parameters

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

1 39

Backward pass
2. Find how the loss
changes as a function of
the parameters  and .

𝑓0 = 𝛽0 + 𝜔0 ⋅ 𝑥
ℎ1 = a[𝑓0]
𝑓1 = 𝛽1 + 𝜔1 ⋅ ℎ1
ℎ2 = a[𝑓1]

𝑓2 = 𝛽2 + 𝜔2 ⋅ ℎ2
ℎ3 = a[𝑓2]
𝑓3 = 𝛽3 + 𝜔3 ⋅ ℎ3
ℓ𝑖 = 𝑦𝑖 − 𝑓3

2

40

Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass

41

Matrix calculus

Scalar function 𝑓 ⋅ of a vector 𝐚

The derivative with respect to vector 𝐚 is a vector of the same shape as 𝐚.
42

Matrix calculus

Scalar function 𝑓 ⋅ of a matrix 𝐀

The derivative with respect to matrix 𝐀 is a matrix of the same shape as 𝐀.
43

Matrix calculus
Vector function 𝐟 ⋅ of a vector 𝐚

Vector of scalar valued functions

Columns are each
element function

Rows are each
variable element

44

Comparing vector and matrix

Scalar derivatives:

45

Comparing vector and matrix

Scalar derivatives:

Matrix derivatives:

46

Comparing vector and matrix

Scalar derivatives:

Matrix derivatives:

47

Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass

48

The forward pass

1. Write this as a series
of
intermediate
calculations

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

49

The forward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

50

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

51

Gradients

• Backpropagation intuition
• Toy model
• Matrix calculus
• Backpropagation matrix forward pass
• Backpropagation matrix backward pass

52

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

53

Yikes!

• But:

• Quite similar to:

54

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

55

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

56

Derivative of ReLU

57

Derivative of ReLU

“Indicator function”

ReLU 𝑧 = max(0, 𝑧)

𝜕ReLU[𝑧]

𝜕𝑥
= 𝕀[𝑧 > 0]

58

Derivative of ReLU
1. Consider:

where:

2. We could equivalently write: 3. Taking the derivative

4. We can equivalently pointwise multiply by diagonal

59

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

60

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

61

The backward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

𝐟0

𝐟1
𝐟2

𝐟3

𝐡1

𝐡2
𝐡3

62

Pros and cons

• Extremely efficient
• Only need matrix multiplication and thresholding for ReLU functions

• Memory hungry – must store all the intermediate quantities
• Sequential

• can process multiple batches in parallel
• but things get harder if the whole model doesn’t fit on one machine.

63

Looking Ahead to Initialization

The chain rule tells us to multiply all these “local” partial derivatives
together…

• What happens when most of those values are >2.0?
• What happens when most of those values are <0.5?

Our initialization will be setting the initial local partial derivatives.

	Slide 1: Deep Learning for Data Science DS 542
	Slide 2: Plan for Today
	Slide 3: How do we efficiently compute the gradient over deep networks?
	Slide 4: Loss function
	Slide 5: Gradient descent algorithm
	Slide 6: But so far, we looked at simple models that were easy to calculate gradients
	Slide 7: What about deep learning models?
	Slide 8: We need to compute partial derivatives w.r.t. every parameter!
	Slide 9: Network equation gets unwieldy even for small models
	Slide 10: Don’t We Have Auto Grad?
	Slide 11: Gradients
	Slide 12: Problem 1: Computing gradients
	Slide 13: Algorithm to compute gradient efficiently
	Slide 14: BackProp intuition #1: the forward pass
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Gradients
	Slide 19: Toy Network
	Slide 20: Gradients of toy function
	Slide 21: Toy function
	Slide 22: Refresher: The Chain Rule
	Slide 23: Forward pass
	Slide 24: Backward pass
	Slide 25: Backward pass
	Slide 26: Backward pass
	Slide 27: Backward pass
	Slide 28: Backward pass
	Slide 29: Backward pass
	Slide 30: Backward pass
	Slide 31: Backward pass
	Slide 32: Backward pass
	Slide 33: Backward pass
	Slide 34: Backward pass
	Slide 35: Backward pass
	Slide 36: We extend this to get to the parameters omega’s and beta’s
	Slide 37: Backward pass
	Slide 38: Backward pass
	Slide 39: Backward pass
	Slide 40: Backward pass
	Slide 41: Gradients
	Slide 42: Matrix calculus
	Slide 43: Matrix calculus
	Slide 44: Matrix calculus
	Slide 45: Comparing vector and matrix
	Slide 46: Comparing vector and matrix
	Slide 47: Comparing vector and matrix
	Slide 48: Gradients
	Slide 49: The forward pass
	Slide 50: The forward pass
	Slide 51: The backward pass
	Slide 52: Gradients
	Slide 53: The backward pass
	Slide 54: Yikes!
	Slide 55: The backward pass
	Slide 56: The backward pass
	Slide 57: Derivative of ReLU
	Slide 58: Derivative of ReLU
	Slide 59: Derivative of ReLU
	Slide 60: The backward pass
	Slide 61: The backward pass
	Slide 62: The backward pass
	Slide 63: Pros and cons
	Slide 64: Looking Ahead to Initialization

